defmodule Ash.SatSolver do @moduledoc false alias Ash.Filter alias Ash.Query.{Expression, Not, Ref} defmacro b(statement) do value = Macro.prewalk( statement, fn {:and, _, [left, right]} -> quote do {:and, unquote(left), unquote(right)} end {:or, _, [left, right]} -> quote do {:or, unquote(left), unquote(right)} end {:not, _, [value]} -> quote do {:not, unquote(value)} end other -> other end ) quote do unquote(value) |> Ash.SatSolver.balance() end end def balance({op, left, right}) do left = balance(left) right = balance(right) [left, right] = Enum.sort([left, right]) {op, left, right} end def balance({:not, {:not, right}}) do balance(right) end def balance({:not, statement}) do {:not, balance(statement)} end def balance(other), do: other def strict_filter_subset(filter, candidate) do case {filter, candidate} do {%{expression: nil}, %{expression: nil}} -> true {%{expression: nil}, _candidate_expr} -> true {_filter_expr, %{expression: nil}} -> false {filter, candidate} -> do_strict_filter_subset(filter, candidate) end end defp do_strict_filter_subset(filter, candidate) do case transform_and_solve( filter.resource, Expression.new(:and, filter.expression, candidate.expression) ) do {:error, :unsatisfiable} -> false {:ok, _} -> case transform_and_solve( filter.resource, Expression.new(:and, Not.new(filter.expression), candidate.expression) ) do {:error, :unsatisfiable} -> true _ -> :maybe end end end defp filter_to_expr(nil), do: nil defp filter_to_expr(false), do: false defp filter_to_expr(true), do: true defp filter_to_expr(%Filter{expression: expression}), do: filter_to_expr(expression) defp filter_to_expr(%{__predicate__?: true} = predicate), do: predicate defp filter_to_expr(%Not{expression: expression}), do: b(not filter_to_expr(expression)) defp filter_to_expr(%Expression{op: op, left: left, right: right}) do {op, filter_to_expr(left), filter_to_expr(right)} end def transform_and_solve(resource, expression) do expression |> consolidate_relationships(resource) |> upgrade_related_filters_to_join_keys(resource) |> build_expr_with_predicate_information() |> solve_expression() end defp upgrade_related_filters_to_join_keys( %Expression{op: op, left: left, right: right}, resource ) do Expression.new( op, upgrade_related_filters_to_join_keys(left, resource), upgrade_related_filters_to_join_keys(right, resource) ) end defp upgrade_related_filters_to_join_keys(%Not{expression: expression}, resource) do Not.new(upgrade_related_filters_to_join_keys(expression, resource)) end defp upgrade_related_filters_to_join_keys( %{__operator__?: true, left: left, right: right} = op, resource ) do %{op | left: upgrade_ref(left, resource), right: upgrade_ref(right, resource)} end defp upgrade_related_filters_to_join_keys( %{__function__?: true, arguments: arguments} = function, resource ) do %{function | arguments: Enum.map(arguments, &upgrade_ref(&1, resource))} end defp upgrade_related_filters_to_join_keys(expr, _), do: expr defp upgrade_ref( %Ash.Query.Ref{attribute: attribute, relationship_path: path} = ref, resource ) when path != [] do with relationship when not is_nil(relationship) <- Ash.Resource.relationship(resource, path), true <- attribute.name == relationship.destination_field, new_attribute when not is_nil(new_attribute) <- Ash.Resource.attribute(relationship.source, relationship.source_field) do %{ ref | relationship_path: :lists.droplast(path), attribute: new_attribute, resource: resource } else _ -> ref end end defp upgrade_ref(other, _), do: other defp consolidate_relationships(expression, resource) do {replacements, _all_relationship_paths} = expression |> Filter.relationship_paths() |> Enum.reduce({%{}, []}, fn path, {replacements, kept_paths} -> case find_synonymous_relationship_path(resource, kept_paths, path) do nil -> {replacements, [path | kept_paths]} synonymous_path -> Map.put(replacements, path, synonymous_path) end end) do_consolidate_relationships(expression, replacements) end defp do_consolidate_relationships( %Expression{op: op, left: left, right: right}, replacements ) do Expression.new( op, do_consolidate_relationships(left, replacements), do_consolidate_relationships(right, replacements) ) end defp do_consolidate_relationships(%Not{expression: expression}, replacements) do Not.new(do_consolidate_relationships(expression, replacements)) end defp do_consolidate_relationships(%Ash.Query.Ref{relationship_path: path} = ref, replacements) when path != [] do case Map.fetch(replacements, path) do {:ok, replacement} when not is_nil(replacement) -> %{ref | relationship_path: replacement} :error -> ref end end defp do_consolidate_relationships(%{__function__?: true, arguments: args} = func, replacements) do %{func | arguments: Enum.map(args, &do_consolidate_relationships(&1, replacements))} end defp do_consolidate_relationships( %{__operator__?: true, left: left, right: right} = op, replacements ) do %{ op | left: do_consolidate_relationships(left, replacements), right: do_consolidate_relationships(right, replacements) } end defp do_consolidate_relationships(other, _), do: other defp find_synonymous_relationship_path(resource, paths, path) do Enum.find_value(paths, fn candidate_path -> if synonymous_relationship_paths?(resource, candidate_path, path) do candidate_path else false end end) end def synonymous_relationship_paths?(_, [], []), do: true def synonymous_relationship_paths?(_resource, candidate_path, path) when length(candidate_path) != length(path), do: false def synonymous_relationship_paths?(resource, [candidate_first | candidate_rest], [first | rest]) when first == candidate_first do synonymous_relationship_paths?( Ash.Resource.relationship(resource, candidate_first).destination, candidate_rest, rest ) end def synonymous_relationship_paths?( left_resource, candidate, search, right_resource \\ nil ) def synonymous_relationship_paths?(_, [], [], _), do: true def synonymous_relationship_paths?(_, [], _, _), do: false def synonymous_relationship_paths?(_, _, [], _), do: false def synonymous_relationship_paths?( left_resource, [candidate_first | candidate_rest] = candidate, [first | rest] = search, right_resource ) do right_resource = right_resource || left_resource relationship = Ash.Resource.relationship(left_resource, first) candidate_relationship = Ash.Resource.relationship(right_resource, candidate_first) cond do !relationship || !candidate_relationship -> false relationship.type == :many_to_many && candidate_relationship.type == :has_many -> synonymous_relationship_paths?( left_resource, [relationship.join_relationship | candidate], search, right_resource ) relationship.type == :has_many && candidate_relationship.type == :many_to_many -> synonymous_relationship_paths?( left_resource, candidate, [candidate_relationship.join_relationship | search], right_resource ) true -> comparison_keys = [ :source_field, :destination_field, :source_field_on_join_table, :destination_field_on_join_table, :destination_field, :destination ] Map.take(relationship, comparison_keys) == Map.take(candidate_relationship, comparison_keys) and synonymous_relationship_paths?(relationship.destination, candidate_rest, rest) end end defp build_expr_with_predicate_information(expression) do simplified = simplify(expression) if simplified == expression do all_predicates = expression |> Filter.list_predicates() |> Enum.uniq() comparison_expressions = all_predicates |> Enum.filter(fn %module{} -> :erlang.function_exported(module, :compare, 2) end) |> Enum.reduce([], fn predicate, new_expressions -> all_predicates |> Enum.reject(&Kernel.==(&1, predicate)) |> Enum.filter(&shares_ref?(&1, predicate)) |> Enum.reduce(new_expressions, fn other_predicate, new_expressions -> # With predicate as a and other_predicate as b case Ash.Filter.Predicate.compare(predicate, other_predicate) do :right_includes_left -> # b || !a [b(other_predicate or not predicate) | new_expressions] :left_includes_right -> # a || ! b [b(predicate or not other_predicate) | new_expressions] :mutually_inclusive -> # (a && b) || (! a && ! b) [ b((predicate and other_predicate) or (not predicate and not other_predicate)) | new_expressions ] :mutually_exclusive -> [b(not (other_predicate and predicate)) | new_expressions] _other -> # If we can't tell, we assume that both could be true new_expressions end end) end) |> Enum.uniq() expression = filter_to_expr(expression) expression_with_comparisons = Enum.reduce(comparison_expressions, expression, fn comparison_expression, expression -> b(comparison_expression and expression) end) all_predicates |> Enum.map(& &1.__struct__) |> Enum.uniq() |> Enum.flat_map(fn struct -> if :erlang.function_exported(struct, :bulk_compare, 1) do struct.bulk_compare(all_predicates) else [] end end) |> Enum.reduce(expression_with_comparisons, fn comparison_expression, expression -> b(comparison_expression and expression) end) else build_expr_with_predicate_information(simplified) end end def mutually_exclusive(predicates, acc \\ []) def mutually_exclusive([], acc), do: acc def mutually_exclusive([predicate | rest], acc) do new_acc = Enum.reduce(rest, acc, fn other_predicate, acc -> [b(not (predicate and other_predicate)) | acc] end) mutually_exclusive(rest, new_acc) end def left_excludes_right(left, right) do b(not (left and right)) end def right_excludes_left(left, right) do b(not (right and left)) end def mutually_inclusive(predicates, acc \\ []) def mutually_inclusive([], acc), do: acc def mutually_inclusive([predicate | rest], acc) do new_acc = Enum.reduce(rest, acc, fn other_predicate, acc -> [b((predicate and other_predicate) or (not predicate and not other_predicate)) | acc] end) mutually_exclusive(rest, new_acc) end def right_implies_left(left, right) do b(not (right and not left)) end def left_implies_right(left, right) do b(not (left and not right)) end defp shares_ref?(left, right) do any_refs_in_common?(refs(left), refs(right)) end defp any_refs_in_common?(left_refs, right_refs) do Enum.any?(left_refs, &(&1 in right_refs)) end defp refs(%{__operator__?: true, left: left, right: right}) do Enum.filter([left, right], &match?(%Ref{}, &1)) end defp refs(%{__function__?: true, arguments: arguments}) do Enum.filter(arguments, &match?(%Ref{}, &1)) end defp refs(_), do: [] defp simplify(%Expression{op: op, left: left, right: right}) do Expression.new(op, simplify(left), simplify(right)) end defp simplify(%Not{expression: expression}) do Not.new(simplify(expression)) end defp simplify(%mod{__predicate__?: true} = predicate) do if :erlang.function_exported(mod, :simplify, 1) do predicate |> mod.simplify() |> Kernel.||(predicate) else predicate end end defp simplify(other), do: other def solve_expression(expression) do expression_with_constants = b(true and not false and expression) {bindings, expression} = extract_bindings(expression_with_constants) expression |> to_conjunctive_normal_form() |> lift_clauses() |> negations_to_negative_numbers() |> Enum.uniq() |> Picosat.solve() |> solutions_to_predicate_values(bindings) end defp solutions_to_predicate_values({:ok, solution}, bindings) do scenario = Enum.reduce(solution, %{true: [], false: []}, fn var, state -> fact = Map.get(bindings, abs(var)) Map.put(state, fact, var > 0) end) {:ok, scenario} end defp solutions_to_predicate_values({:error, error}, _), do: {:error, error} defp extract_bindings(expr, bindings \\ %{current: 1}) defp extract_bindings({operator, left, right}, bindings) do {bindings, left_extracted} = extract_bindings(left, bindings) {bindings, right_extracted} = extract_bindings(right, bindings) {bindings, {operator, left_extracted, right_extracted}} end defp extract_bindings({:not, value}, bindings) do {bindings, extracted} = extract_bindings(value, bindings) {bindings, b(not extracted)} end defp extract_bindings(value, %{current: current} = bindings) do current_binding = Enum.find(bindings, fn {key, binding_value} -> key != :current && binding_value == value end) case current_binding do nil -> new_bindings = bindings |> Map.put(:current, current + 1) |> Map.put(current, value) {new_bindings, current} {binding, _} -> {bindings, binding} end end # A helper function for formatting to the same output we'd give to picosat @doc false def to_picosat(clauses, variable_count) do clause_count = Enum.count(clauses) formatted_input = Enum.map_join(clauses, "\n", fn clause -> format_clause(clause) <> " 0" end) "p cnf #{variable_count} #{clause_count}\n" <> formatted_input end defp negations_to_negative_numbers(clauses) do Enum.map( clauses, fn {:not, var} when is_integer(var) -> [negate_var(var)] var when is_integer(var) -> [var] clause -> Enum.map(clause, fn {:not, var} -> negate_var(var) var -> var end) end ) end defp negate_var(var, multiplier \\ -1) defp negate_var({:not, value}, multiplier) do negate_var(value, multiplier * -1) end defp negate_var(value, multiplier), do: value * multiplier defp format_clause(clause) do Enum.map_join(clause, " ", fn {:not, var} -> "-#{var}" var -> "#{var}" end) end defp lift_clauses({:and, left, right}) do lift_clauses(left) ++ lift_clauses(right) end defp lift_clauses({:or, left, right}) do [lift_or_clauses(left) ++ lift_or_clauses(right)] end defp lift_clauses(value), do: [[value]] defp lift_or_clauses({:or, left, right}) do lift_or_clauses(left) ++ lift_or_clauses(right) end defp lift_or_clauses(value), do: [value] defp to_conjunctive_normal_form(expression) do expression |> demorgans_law() |> distributive_law() end defp distributive_law(expression) do distributive_law_applied = apply_distributive_law(expression) if expression == distributive_law_applied do expression else distributive_law(distributive_law_applied) end end defp apply_distributive_law({:or, left, {:and, right1, right2}}) do left_distributed = apply_distributive_law(left) {:and, {:or, left_distributed, apply_distributive_law(right1)}, {:or, left_distributed, apply_distributive_law(right2)}} end defp apply_distributive_law({:or, {:and, left1, left2}, right}) do right_distributed = apply_distributive_law(right) {:and, {:or, apply_distributive_law(left1), right_distributed}, {:or, apply_distributive_law(left2), right_distributed}} end defp apply_distributive_law({:not, expression}) do {:not, apply_distributive_law(expression)} end defp apply_distributive_law({operator, left, right}) when operator in [:and, :or] do {operator, apply_distributive_law(left), apply_distributive_law(right)} end defp apply_distributive_law(var) when is_integer(var) do var end defp demorgans_law(expression) do demorgans_law_applied = apply_demorgans_law(expression) if expression == demorgans_law_applied do expression else demorgans_law(demorgans_law_applied) end end defp apply_demorgans_law({:not, {:and, left, right}}) do {:or, {:not, apply_demorgans_law(left)}, {:not, apply_demorgans_law(right)}} end defp apply_demorgans_law({:not, {:or, left, right}}) do {:and, {:not, left}, {:not, right}} end defp apply_demorgans_law({operator, left, right}) when operator in [:or, :and] do {operator, apply_demorgans_law(left), apply_demorgans_law(right)} end defp apply_demorgans_law({:not, expression}) do {:not, apply_demorgans_law(expression)} end defp apply_demorgans_law(var) when is_integer(var) do var end end